Whai: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling

ثبت نشده
چکیده

To train an inference network jointly with a deep generative topic model, making it both scalable to big corpus and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation (DLDA), which infers posterior samples via a hybrid of stochasticgradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarchy of gamma distributions, while the inference network of WHAI is a Weibull upward-downward variational autocoder, which integrates a deterministic-upward deep neural network, and a stochastic-downward deep generative model based on a hierarchy of Weibull distributions. The Weibull distribution can be used to well approximate a gamma distribution with an analytic Kullback-Leibler divergence, and has a simple reparameterization via the uniform noise, which help efficiently compute the gradients of the evidence lower bound with respect to the parameters of the inference network. The effectiveness and efficiency of WHAI is illustrated with experiments on big corpora.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whai: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling

To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarc...

متن کامل

Whai: Weibull Hybrid Autoencoding Inference for Deep Topic Modeling

To train an inference network jointly with a deep generative topic model, making it both scalable to big corpora and fast in out-of-sample prediction, we develop Weibull hybrid autoencoding inference (WHAI) for deep latent Dirichlet allocation, which infers posterior samples via a hybrid of stochastic-gradient MCMC and autoencoding variational Bayes. The generative network of WHAI has a hierarc...

متن کامل

Autoencoding Variational Inference for Topic Models

Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven difficult to apply to topic models in practice. We present what is to our knowledge t...

متن کامل

Comparing the Shape Parameters of Two Weibull Distributions Using Records: A Generalized Inference

The Weibull distribution is a very applicable model for the lifetime data. For inference about two Weibull distributions using records, the shape parameters of the distributions are usually considered equal. However, there is not an appropriate method for comparing the shape parameters in the literature. Therefore, comparing the shape parameters of two Weibull distributions is very important. I...

متن کامل

Relational Deep Learning: A Deep Latent Variable Model for Link Prediction

Link prediction is a fundamental task in such areas as social network analysis, information retrieval, and bioinformatics. Usually link prediction methods use the link structures or node attributes as the sources of information. Recently, the relational topic model (RTM) and its variants have been proposed as hybrid methods that jointly model both sources of information and achieve very promisi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017